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Using a Phase Space Statistic to Identify Resonant Objects
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Abstract The identification of resonant objects in radar or sonar, important for

object identification, is difficult because existing methods require that the signal have a

large signal to noise ratio. I show in this paper that a modified version of the Kaplan

Glass (KG) statistic, a phase space statistic used to determine if a signal is deterministic,

is sensitive to the properties of resonant objects. The modified KG statistic can be used to

detect the presence of a resonant object even when the radar or sonar signal does not

come from a deterministic dynamical system. I demonstrate the use of the modified KG

statistic both numerically and in a simple experiment.
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In radar or sonar, a transmitted signal is reflected from a target, and the

reflected signal is used to find information about the target, such as the distance to

the target, or its velocity. Many complex objects have natural resonant modes, and

trying to identify the object from these modes is an ongoing problem. The first part

of the problem is detecting the modes themselves. A standard approach it to

transmit a large impulse. The impulse excites all the resonant modes of the target,

and the frequencies of the modes may be determined by analyzing the signal coming

from the target after the end of the reflected pulse. Unfortunately, the state excited

by the impulse is transient, so the signal loses amplitude with time, resulting in only

a small signal to analyze. In addition, other nearby objects will also reflect the

impulse and oscillate at their own natural frequencies, adding noise to the already

weak transient signal.

It was discovered that a modified version of the Kaplan Glass (KG) phase

space statistic is sensitive to the properties of resonant objects. The Kaplan Glass

statistic was originally developed to detect whether or not a signal was deterministic,

but it was found to be useful for detecting resonance in radar or sonar applications

even when the radar or sonar signal was not deterministic. The KG statistic

incorporates an average over the phase space, and it may be used with long signals,

so it is less sensitive to noise than other resonance detection methods.

Introduction

A common problem in radar and sonar is trying to identify an object from a

reflected signal. One common method is to transmit an impulse signal. The impulse
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excites natural resonances in the target, causing it to ring. After waiting for some time,

the decaying signal from the target is recorded and analyzed to determine the resonant

frequencies that are present 1.

A disadvantage of this method is that the decaying impulse response is not large,

so the signal to noise ratio is low. It is possible to create a larger signal by using a larger

impulse, but at some point the transmitter power required becomes excessive.

I have found that a statistic developed by Kaplan and Glass (KG) 2 to determine if

a signal came from a deterministic system may also be used to detect if a signal has been

scattered by a resonant object. The KG statistic may also be used to determine the time at

which a reflected signal returns to the receiver, in the same way that cross correlations are

used. Because the KG statistic is essentially linear, and uses averaging over phase space,

the KG statistic is robust to noise, so it should be able to detect resonance at a lower

signal to noise ratio than the impulse method.

Radar Basics

In the fields of radar and sonar, transmitted signals that are reflected from objects

are used to determine the distance to and radial velocity of those objects 3. Usually,

periodic signals or combinations of periodic signals have been used for these

applications, but other types of signals such as noise or chaos have also been explored.

Chaotic signals may have a large bandwidth, which is useful in increasing the precision

with which distances may be measured. To understand this principle, think of a pulse or a

wave packet: the more the wave packet is localized in time, the greater the spread of

frequencies used to create the wave packet The application of chaos to radar or sonar has
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been considered by several groups 4-8. To measure distance in radar, one actually

measures a delay time, so signals with broader bandwidths increase the precision with

which distance may be measured.

The Kaplan-Glass Statistic

Given a time series signal x(t), the first step in computing the KG statistic is to

embed the signal in a phase space 9.  The phase space dimension and delay may be

determined by appropriate methods 10.

If x(t) comes from a deterministic system (and has been properly embedded), then

points that are nearby in phase space should have similar dynamics. The KG method

constructs a set of dynamics vectors !(ti) = (x(ti + "0 + #) - x(ti + "0),   (x(ti + "1 + #) - x(ti

+ "1),  . . . )   for a set of points that are neighbors in phase space, where "0, "1 , . . .  are the

phase space delays for each dimension, and # is the delay used to compute the derivative

vectors. In this paper, # is set to 1.

The vectors for the set of neighbors are each normalized to unit vectors, and then

they are summed to get the statistic

 SKG =
1
N

! ti( )
! ti( )i=1

N

"                                                       (1)

where N is the number of phase space neighbors in the small region. If all the derivative

vectors are parallel, then SKG = 1. If the vectors are oriented randomly, then SKG is not 0,

but has a finite value that depends on the properties of a random walk. In the original

Kaplan and Glass paper, they compute the average displacement of a random walk with

the same number of dimensions and points as were used to calculate SKG , and subtract



5

the random walk value from SKG to get a number between 0 and 1, where 0 corresponds

to randomly oriented vectors, and 1 corresponds to parallel vectors. In the work presented

here, since I am working with short time series, it appears to be more accurate instead to

repeat the KG statistic for a  group of points randomly selected from the time series x(t). I

call this statistic SR, and subtract it from SKG . The calculation is then repeated for a

number of different neighborhoods on the attractor to produce an average statistic SA =

<SKG – SR> .

Referenced Kaplan-Glass Statistic for Signal Detection

In radar and sonar, we transmit a signal x(t) and receive a signal y(t), which may

contain multiple delayed copies of x(t), as well as added noise. If we try to embed y(t) in

a phase space, we no longer know which points are neighbors in phase space, because

their locations have been altered by noise and by the multiple copies of x(t).

To understand how the KG statistic may be used to identify the presence of a

delayed signal, begin by assuming that y(t) contains only 1 delayed version of x(t), plus

added noise. We embed the original undelayed signal x(t) and find a set of phase space

neighbors on the embedded x(t) as before. The neighboring points have indices ( i0, i1, . . .

iN ).  We then take a set of points with the same indices in y(t). Because y(t) is delayed in

time from x(t), this set of points will not in general be neighbors on y(t), so if we compute

the KG statistic for this group of points, it will be close to the value for randomly

distributed points. The indices of the points used for calculating the KG statistic are based

on the reference signal, so I call this version of the KG statistic the Referenced Kaplan-
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Glass (RKG) statistic. If we repeat this procedure for many neighborhoods on x(t), the

average statistic SA calculated on y(t) will be near 0.

Next, we add a delay k to the index of each of the points chosen from x(t) and

calculate the RKG statistic for the set of points on y(t) with indices ( i0+k, i1+k, . . . iN+k

). If k is equal to the time delay of  y(t) , then  the points with these indices will be

neighbors in y(t), and the RKG statistic will be large.

The KG statistic was developed to test for deterministic signals, but a low

dimensional dynamical system driven by a random signal, or even a broad band signal

such as a linear chirp 3, can give a value for the KG statistic similar to the value for a

deterministic system. It is known that filtering of a chaotic signal can increase its

dimension, if certain conditions on the negative Lyapunov exponents of the filter and the

chaotic signal hold 11. Physically, dimension increase can occur when the filter mixes

parts of the chaotic signal that are well separated in time, so that they are uncorrelated. If

the frequencies in the chaotic signal are near to the resonant frequency of a resonant

system, however, these conditions are unlikely to hold, so dimension increase is not a

concern here.  The fact that the KG statistic can be large for nondeterministic signals

actually makes it more useful for radar and sonar, as it allows a greater variety of signals

to be used. Modulated sine waves are common in radar and sonar because they have a

constant envelope, which allows them to make more efficient use of transmitter power.

Figure 1 shows the result of using the RKG statistic to detect a delayed signal

from a Lorenz system. The original signal x(t) is a 2000 point time series of the x

component of a chaotic Lorenz system 12 , with a time step of 0.05. The signal y(t) was
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the same Lorenz signal delayed by 500 points, with an added Gaussian white noise signal

that was 10% of the amplitude of the Lorenz signal.
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Figure 1. Averaged RKG statistic SA (solid line) and cross correlation R (dotted line)

vs delay time step k for a Lorenz signal delayed by 500 points. Both statistics have

been normalized so that the largest amplitude is 1.

The x(t)  signal was embedded in a 3 dimensional phase space, with delays of 0, 5 and

10 points. It was found that signal detection using the RKG statistic was not very

sensitive to the specific phase space parameters for the Lorenz signal. Also plotted in Fig.

1 is the cross correlation between x(t) and y(t), where

R m( ) = x n + m( )
n=0

N !m!1

" y n( )                                             (2).

Both statistics in Fig. 1 have been normalized so that their largest value is 1. The cross

correlation is mathematically equivalent to a matched filter, which is a standard method

of signal detection in radar and sonar 3.

It is often necessary to detect a signal in the presence of multiple, overlapping

copies of the signal. Figure 2 is a simulation of such a situation. For Fig. 2, the signal y(t)

contains multiple copies of the Lorenz signal in x(t), with different amplitudes and

delays. One of the Lorenz signals has a delay of 200 points and an amplitude multiplier
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of 1.0, one has a delay of 1000 points and an amplitude multiplier of 0.5, and one has a

delay of 1800 points and an amplitude multiplier of 1.0.
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Figure 2. Averaged RKG statistic SA (solid line) and cross correlation R (dotted line)

vs. delay time step k for a sum of Lorenz signals, with delays of 200, 1000 and 1800

points, and amplitude multipliers of 1.0, 0.5, and 1.0.

The averaged RKG statistic SA detects all 3 peaks, although the signal to noise ratio for

the middle peak is not as good as for the cross correlation.

Signals such as the Lorenz signal are not usually used in radar because they do

not have a constant envelope. Constant envelope signals, such as modulated sine waves,

make more efficient use of the transmitter power. Figure 3 shows an example of detecting

a sine wave that is frequency modulated with random noise. The modulation width of the

sine wave, which contained 20 points per cycle,  was 10%, and the original signal x(t)

was embedded in a 3-d phase space, with delays of 0, 5, and 10. The signal y(t) contained

a copy of x(t) delayed by 500 points, with 10% added Gaussian white noise.
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Figure 3. Averaged RKG statistic SA (solid line) and cross correlation R (dotted line)

vs. delay time step k for a noise modulated sine wave signal delayed by 500 points.

Both statistics have been normalized so that the largest amplitude is 1.

The cross correlation for the modulated sine wave in Fig. 3 appears to be very

complex. The complex curve is caused by a “ripple” in the cross correlation which

repeats once every period of the unmodulated sine wave, or every 10 steps. The RKG

statistic actually has a slightly narrower central peak than the cross correlation for the

modulated sine wave, with the overall signal to noise ratio being about the same.

If the radar or sonar signal is reflected off a moving target, the reflected signal

will undergo a Doppler shift, where all frequencies are shifted by an amount proportional

to the target velocity. The RKG statistic was tested and was found to be sensitive to a

Doppler shift, so it is also useful when reflected signals are Doppler shifted.

Resonance Detection

While it is possible to use the RKG statistic purely for signal detection, there is no

advantage to doing so, since it is no better than established techniques. It was found that

when a low dimensional damped dynamical system was driven near its resonant

frequency, the RKG statistic changed as the driving signal frequency passed through the
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resonance. This change in the RKG statistic is useful for detecting the presence of a

resonance. There are existing techniques for detecting resonance based on exciting the

target with an impulse 1, but these methods require a high signal to noise ratio. Resonance

detection is used to identify targets based on the natural resonant modes of the target.

For simplicity, I use a sine wave to demonstrate why the RKG statistic is sensitive

to a phase shift. Pure sine waves are actually not useful in radar or sonar because they do

not give information on location (every cycle is identical, so a sine wave contains no

timing information),  but it is easiest to explain the statistic with a sine wave.

A sine wave signal $1(i) = sin(2%i/20) with a period of 20 points was generated,

where i = 0, 1, 2, . . . .  One period of this signal is plotted in Fig. 4. The signal $2(i) was

a copy of $1(i) whose phase was advanced by 4 points.  The signal $2(i) was also plotted

in Fig. 4.
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Figure 4. The signals $1(i) (circles) and $2(i) (squares). The underlined points 2, 8,

12, and 18 were used for calculating the derivative vectors.

The reference signal $1(i) was embedded in 2 dimensions, with an embedding

delay of half a period (10 points). The embedding delay was chosen to produce an RKG

statistic of 0 for a sine wave in phase with $1(i) . The reason that the RKG statistic is zero

is that embedding a sine wave with a delay of half of a period collapses the plot onto a

line with a slope of -45 degrees. In this plot,  points that are reflections of each other

about the maximum or the minimum in the sine wave fall on top of each other, so they

are nearest neighbors. Because the nearest neighbors are reflected about the maximum or

minimum, their derivative vectors will be antiparallel. Figure 5 shows an example where

the embedding delay is 9, not 10, in order to spread out the plot so that it is easier to

understand.
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Figure 5. Plot of the reference signal $1(i) delayed by 9 points vs. the reference

signal. The 9 point delay was used to spread out the plot so that it was easier to see.

The arrows show the approximate derivative directions for the points (2, 12) and (8,

18). These points fall on top of each other for a delay of 10.

For the example in Fig. 5, the initial index was arbitrarily chosen as 2, so that the

first embedded point is (2, 12). The point (8,18) has the same coordinates as (2, 12), as

can be seen on Fig. 4. On Fig. 5, the arrows show the direction of the derivatives at points

(2, 12) and (8, 18). The derivative vectors are antiparallel.

On Figure 6 is plotted $2(i+9) vs. $2(i). Because $2(i) is phase shifted from $1(i),

the points (2, 12) and (8, 18) are no longer neighbors, and are not reflections of each

other about the minimum or maximum of the sine wave.
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Figure 6. Plot of the signal $2(i+9) vs. $2(i). The 9 point delay was used to spread out

the plot so that it was easier to see. The arrows show the approximate derivative

directions for the points (2, 12) and (8, 18). These points fell on top of each other for

the embedded version of $1(i) a delay of 10.

As can be seen in Fig. 6, the derivative vectors for (2, 12) and (8, 18) are no longer

opposite in direction, so they no longer cancel,  causing the RKG statistic to have a value

> 0.

When a narrow band signal drives a resonant system, the system response goes

through a phase shift,  with a phase shift of 0 at resonance. If the RKG statistic is applied

to the response signal (with the driving signal as a reference signal) with an embedding

delay of half a period, then the RKG statistic will be at a minimum at resonance.

Different choices of delay are also possible; for example, for a delay of one quarter cycle,
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points shifted by one cycle of the sine wave will be neighbors, and the RKG statistic will

pass through a maximum at resonance.

Numerical Detection of Resonance

A simple damped oscillator was used to numerically simulate an object with 1

resonant mode. The oscillator was described by

d!
dt

= "1#

d#
dt

= "1 $%# $"! + sd( )
" = 1 % = 0.1

                                    (3)

where sd is the signal that drives the resonant system and &1 can be varied to change the

resonant frequency of the resonant system.

Figure 7 shows the detection of the resonance of eq. (3) using the RKG statistic.

The driving signal sd in this case was a sine wave that was frequency modulated by

random noise. The output signal ' from eq. (3) had 10% Gaussian white noise added to it.
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Figure 7. Averaged RKG statistic, normalized by the cross correlation, vs. time

constant &1  for the output signal from the resonant system of eq. (3).

To produce Fig. 7, the time constant of the resonator was swept through resonance (this

required less computation than actually sweeping the frequency of sd). As the time

constant passes through resonance, a minimum is seen in the RKG statistic. The averaged

RKG statistic was normalized by the amplitude of the cross correlation at the same time

delay to correct for any amplitude variation in the signal. The normalized value of SA is SN

.

Usually in radar or sonar, there are other interfering signals present, such as

multiple reflections from multiple targets. Figure 8 shows that the RKG statistic is still

useful for resonance detection when a large interfering signal is present. To create Fig. 8,

the driving signal sd was added (with the same time delay) to the resonator output signal

'. Both signals were normalized to have equal amplitude, and 10% Gaussian white noise

was added to the sum of signals. This simulation represents a situation where the resonant

signal is obscured by a specular reflection from the target.
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Figure 8. Averaged RKG statistic, normalized by the cross correlation, vs. time

constant &1  for the output signal from the resonant system of eq. (3) when the signal

sd has been added as interference.

It is also possible to detect more complex resonances with the RKG statistic. A set

of 3 coupled modes was modeled by

d!1
dt

= "1!2

d!2
dt

= "1 #$!2 #"!1 # $ !2 # !4( ) #" !1 # !3( ) + sd( )
d!3
dt

= 1.5"1!4

d!4
dt

= 1.5"1 #$!4 #"!3 # $ 2!4 # !2 # !6( ) #" 2!3 # !1 # !5( ) + sd( )
d!5
dt

= 0.8"1!6

d!6
dt

= 0.8"1 #$!6 #"!5 # $ !6 # !4( ) #" !5 # !3( ) + sd( )
" = 1 $ = 0.1

               (4).

In this case, the output signal was '1 + '2 + '3 , again with 10% added noise.  Figure 9

shows the result of sweeping the time constant &1 for eq. (4) through the resonant region,

and calculating the RKG statistic.
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Figure 9. Averaged RKG statistic, normalized by the cross correlation,  vs. time

constant &1  for the output signal from the resonant system of eq. (4) showing all 3

resonant modes.

All 3 resonant modes can be seen in Fig. 9.

The RKG statistic could be used to detect resonance when sd was a chaotic signal,

although the reason that detection works is not as obvious as for a simple periodic signal.

For Figure 10, a signal from a Lorenz chaotic signal was used to drive the single mode

resonant system of eq. (3). Once again, the time constant &1 was varied, and the ratio of

the average RKG statistic SA to the cross correlation was plotted. The original Lorenz

signal was embedded in a 3-d phase space, with delays 0, 11, and 19. The delays were

determined by a recently developed method 13.
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Figure 10. Average RKG statistic SA, normalized by the cross correlation, when the

single mode resonant system of eq. (3) is driven by a Lorenz signal.

The delays used here were closer to a quarter cycle then a half cycle, so the RKG

statistic went through a maximum as &1 was swept through resonance

. The signal to noise ratio for the detection of resonance did vary with embedding

parameters, but no comprehensive study of this effect has been done.
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Experimental Test

In order to test the RKG statistic in the lab, a small aluminum box was used as an

acoustic resonator. The dimensions of the box were approximately 12.7 cm x 10.2 cm x

7.6 cm, and a 3.2 cm hole was drilled in the center of the large face of the box. For the

experimental test of the RKG statistic, the box was placed on a stand 61 cm from the

speaker. The microphone was near the speaker. Fig. 11 shows the experimental setup.

microphone

speaker

target

Figure 11. Diagram of experiment with acoustic resonator (target) to test the RKG

statistic.

In the simplest type of sonar experiment to find the distance to the box, the

speaker emits a short pulse, which is reflected by the target and detected by the

microphone. I conducted this experiment to make sure I could detect the box. The signals

used in the pulse experiment are shown in Fig. 12
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Fig 12. (a) Short 9 kHz pulse emitted from the speaker. (b) Signal detected by the

microphone. The first pulse at 2 ms is caused by the signal traveling directly from

the speaker to the microphone. The pulse at about 3.8 ms is the signal reflected from

the aluminum box. The broad signal after 4 ms is caused by reflections from the

tripod that the box sits on, while the signal at 10 ms is a reflection from another

object in the room.

The top trace in Fig. 12 shows the actual waveform that was transmitted by the

speaker, a 1 ms wide pulse with a frequency of 9 kHz. The bottom trace is the signal

actually recorded from the microphone and amplified. At 2 ms, one can see the signal

that travels directly from the speaker to the microphone. The reflection from the
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aluminum box is at about 3.8 ms. The speed of sound in air is about 331 m/s, so the round

trip distance from speaker to box to microphone is about 125 cm, and the box is at about

62 cm from the speaker- roughly the same distance as obtained by direct measurement.

The RKG statistic requires a continuous signal, or a long pulse, so the box can’t

be located simply by looking for a reflected pulse. Instead, the cross correlation between

the reflected signal and a reference signal is used. Reflections from different objects will

produce peaks in the cross correlation signal at delay times corresponding to the round

trip distance between the speaker and the object.

Figure 13 shows the cross correlation signal from the experiment of Fig 11 when

the transmitted signal was a 4 kHz sine wave that was frequency modulated with random

noise, so that its bandwidth was 3% of its center frequency. The modulated sine wave

was produced by an arbitrary waveform generator. The speaker distorted the sine wave

badly, so for a reference signal, the direct signal from the speaker to the microphone with

no target present was used. A delay of 1.8 ms was subtracted from the reference signal to

correct for the time it took the signal to travel from the speaker to the microphone.
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Figure 13. Normalized RKG statistic SN (solid line) and cross correlation R (dotted

line) from the experiment of Fig. 11, when the transmitted signal was a noise

modulated sine wave with a center frequency of 4 kHz. Both signal were normalized

so that their largest amplitude was 1.

Fig. 13 also shows the normalized RKG statistic for the reflected signal,

calculated using the same reference as for the cross correlation. Both the cross correlation

and the RKG statistic show peaks near 2 and 4 ms, roughly the same times as the pulse

signals in Fig. 12.

Box Modes

To find acoustic modes for the box, a speaker was placed just behind the box and

a microphone just in front of the box, directly in front of the hole in the face of the box.

The speaker was driven with a sine wave, which was varied from 2 to 3 kHz, and the rms

amplitude of the signal detected by the speaker was recorded. This test was repeated with

the box absent because the amplitude of the speaker output was not constant over the

range of frequencies used. The amplitude of the signal recorded by the microphone with

the box present was normalized by the amplitude of a signal without the box, and the

resulting amplitude is plotted in Fig. 14.
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Figure 14. Response spectrum for the experimental acoustic resonator.

In Fig. 14, large modes are seen at about 2020 Hz and 2400 Hz. One would expect more

large modes at frequencies below 2 kHz, but in the following experiment, it is necessary

to have some spatial resolution to separate the reflection from the box from reflections off

of other objects in the room. When the center frequency of the audio signal used in the

experiment was below 2 kHz, the signal did not have sufficient bandwidth to resolve the

box.

To find the modes when the box was located apart from the speaker, as in Fig. 11,

the audio signal was a sine wave that was frequency modulated by random noise. The

modulation percentage was 3%. The sine wave was loaded into an arbitrary waveform

generator, and the center frequency of the sine wave could be varied by changing the

output frequency of the arbitrary waveform generator.

To look for resonances using the RKG statistic, the center frequency of the audio

signal was set to different values from 2 kHz to 3 kHz. The arbitrary waveform generator

output a continuous signal, and from the signal received by the microphone, a 10000

point time series was digitized at 100,000 points/sec. For each different frequency, 10 of

these time series were averaged to reduce noise (the ventilation system in the room was

very loud).

Figure 15 shows the result of the experiment. For each center frequency, the RKG

statistic was calculated for a delay value determined by the target distance, 61 cm in this

case (corresponding to the peak in the RKG statistic in Fig. 13). The RKG statistic was

normalized by the cross correlation between reference and received signals at the same

delay value to produce SN , the normalized RKG statistic. In order to more clearly reveal
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the resonances, the experiment was repeated with a non-resonant target the same size as

the box, and the normalized RKG statistic SN0 was found for the non-resonant target.

Figure 13 shows the difference between these 2 statistics.
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Figure 15. Absolute value of the difference between SN , the normalized RKG

statistic with the acoustic resonator present, and SN0, the statistic with a non

resonant target.

The plot in Fig. 15 was smoothed to reduce point-to-point scatter. The modes at 2020 and

2400 Hz are clearly visible.  It is possible that some of the peaks above 2600 Hz

correspond to modes with low amplitudes- it is not clear in Fig 14 if there are more

modes in this range.

At first glance, the data in Fig. 15 is not too impressive. In general, in a real radar

or sonar situation, we would not have a background statistic for a non-resonant target,

although it might be possible to simulate such a background. I did try 2 alternate

approaches to finding the mode spectrum using data from the experiment shown in Fig.

11. First, I tried a direct calculation of the phase difference between reference and

received signals, with either a resonant or a non-resonant target present. The phase

calculation was not able to detect the resonant modes.
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Impulse Detection Method

A standard method for detecting resonance in radar is to transmit a large impulse

signal and record the transient signal from the target after the end of the impulse1. I

transmitted a 1 ms pulse of a 9 kHz signal (above 9 kHz, the speaker output dropped

sharply) and recorded the transient signal from the target after the end of the pulse. The

resulting signal was the same as the signal seen in Fig. 13.  Ten transients were averaged,

and the signal was Fourier transformed to look for frequencies corresponding to modes.
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Figure 16. Portion of Fig 12(b) after main reflection from the box, expanded in scale

Figure 16 shows the transient portion of the reflected signal from the aluminum box. Fig

16 contains the same information as Fig. 12(b), but the time scale has been expanded for

clarity.

In order to find information about the modes of the box from the impulse method,

it is necessary to extract the mode frequencies from the transient signal in Fig. 16. The

dominant frequency in Fig 16 is the 9 kHz excitation frequency, and part of this 9 kHz

signal might be a reflection from the tripod supporting the box. In Fig. 12, another

reflected signal is seen at about 9 ms, which limits the length of the observable transient
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from the box to a total of about 4 ms.  The Nyquist criterion requires 2 points/cycle to

resolve a frequency, so the minimum frequency resolution possible from the transient

signal is 500 Hz, far too coarse to see the modes of Fig. 14. If the interfering reflection

was not present, a longer transient could be recorded, but the transient amplitude is

decaying in time, so the signal to noise ratio would become a problem. In contrast, the

RKG statistic uses a signal of arbitrary length, so in principle arbitrary frequency

resolution is possible.

The RKG statistic works better than the impulse method for several reasons. First,

the RKG statistic uses a signal whose length is not limited by the length of transients or

by other reflections, and the RKG method performs phase space averaging on this long

signal. The RKG statistic also uses time gating, which allows the computation of the

RKG statistic only for objects at a specific distance.

Conclusions

The simple statistic defined by Kaplan and Glass to detect determinism is useful

for more than they intended. As I have shown here, the statistic can detect resonance

using  complex and even non deterministic signals, which can be useful for signature

determination in radar or sonar. The statistic might also be useful for detecting phase

synchronization in chaotic systems 14.

A simple experiment showed that it was possible to detect some modes of an

acoustic resonator in a noisy, cluttered environment.  The RKG statistic worked better

than other methods for detecting resonance. With better equipment, it should be possible

in the future to perform more detailed tests of this statistic.
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